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ABSTRACT

Context. In the standard scenario of planet formation, terrestrial planets and the cores of the giant planets are formed by accretion
of planetesimals. As planetary embryos grow, the planetesimal velocity dispersion increases because of gravitational excitations pro-
duced by embryos. The increasing relative velocities of the planetesimal cause them to fragment through mutual collisions.
Aims. We study the role of planetesimal fragmentation on giant planet formation. We analyze how planetesimal fragmentation modi-
fies the growth of giant planet cores for a wide range of planetesimal sizes and disk masses.
Methods. We incorporated a model of planetesimal fragmentation into our model of in situ giant planet formation. We calculated the
evolution of the solid surface density (planetesimals plus fragments) taking into account the accretion by the planet, migration, and
fragmentation.
Results. Incorporating planetesimal fragmentation significantly modifies the process of planetary formation. If most of the mass loss
in planetesimal collisions is distributed in the smaller fragments, planetesimal fragmentation inhibits the growth of the embryo for
initial planetesimals of radii smaller than 10 km. Only for initial planetesimals with a radius of 100 km, and disks larger than 0.06 M�,
embryos achieve masses larger than the mass of Earth. However, even for these large planetesimals and massive disks, planetesimal
fragmentation induces the quick formation of massive cores only if most of the mass loss in planetesimal collisions is distributed in
the larger fragments.
Conclusions. Planetesimal fragmentation seems to play an important role in giant planet formation. The way in which the mass loss
in planetesimal collisions is distributed leads to different results, inhibiting or favoring the formation of massive cores.
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1. Introduction

According to the core-accretion model (Lissauer & Stevenson
2007), the formation of a giant planet occurs through a sequence
of events: initially, the dust (particles of ∼μm sizes) collapses
onto the protoplanetary disk mid-plane. Then these particles
agglomerate by different mechanisms, which are still debated,
which leads to the formation of planetesimals (objects of be-
tween hundreds of meters and hundreds of kilometers). These
planetesimals grow by mutual accretions until some bodies be-
gin to separate themselves from the population of planetesimals
(planetary embryos, objects with sizes of a few thousand kilo-
meters). The embryo gravitational excitation, which is higher
than that of the planetesimals, limits their growth, and embryos
are the only bodies that grow by accretion of planetesimals. As
the embryos grow, they bound a gaseous envelope. Initially, the
planetesimal accretion rate is much higher than the gas accretion
rate. However, when the mass of the envelope reaches a critical
value on the order of the mass of the solid core, a gaseous run-
away growth process starts. Finally – by mechanisms that are
also still debated – the planet stops to accrete gas and evolves,
contracting and cooling at constant mass.

Therefore, it is important to study the evolution of the pop-
ulation of planetesimals together with the process of accretion
and planet formation. The evolution of the population of plan-
etesimals is a complex phenomenon. Probably the most relevant
phenomena are planetesimal accretion by the embryos, migra-
tion due to gas drag produced by the gaseous component of the

protoplanetary disk, collisional evolution through gravitational
excitations produced by embryos, and planetesimal dispersion
and gap openings.

As embryos grow, they increase the relative velocities of the
planetesimals causing planetesimal fragmentation. After succes-
sive disrupting collisions also called collisional cascade plan-
etesimals become smaller. Inaba et al. (2003), Kobayashi et al.
(2011), and Ormel & Kobayashi (2012) found that a signifi-
cant amount of mass, which remains in small fragments as a
product of the collisions between planetesimals, may be lost
by migration due to gas drag. This means that the planetesimal
fragmentation seems to play an important role in forming the
cores of giant planets. Moreover, as embryos grow, they begin
to bind the surrounding gas. Initially, embryo gaseous envelopes
are less massive, but wide spread. These envelopes cause a loss
of the planetesimal kinetic energy, significantly increasing the
capture cross-section of the planets. The smaller planetesimals
of the distribution suffer more from these effects. Accordingly,
while smaller fragments have higher migration rates due to gas
drag, they are more efficiently accreted by the planet. There is a
strong competition between the time scales of migration and ac-
cretion of small fragments generated by planetesimal fragmen-
tation. Therefore, it is important to study in detail whether the
generation of small fragments, the products of planetesimal frag-
mentation, favors or inhibits giant planet formation.

In previous works (Guilera et al. 2010, 2011) we developed a
model for giant planet formation that calculates their formation
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immersed in a protoplanetary disk that evolves in time. In these
previous works the population of planetesimals evolved by the
accretion of the embryos and by planetesimal migration. In this
new work, we incorporated the fragmentation of planetesimals
to study whether this phenomenon produces significant changes,
which would make it a primary key to consider in the process of
planetary formation.

This work is organized as follows: in Sect. 2 we introduce
some improvements to our previous model; in Sect. 3, we ex-
plain in detail our planetesimal fragmentation model; Sect. 4
shows the results of the role of planetesimal fragmentation on
the growth of an embryo located at 5 au; finally, in Sect. 5 we
present the conclusions from our results.

2. Improvements to our previous model

Our model that describes the evolution of the protoplanetary disk
is based on the works of Guilera et al. (2010, 2011) with some
minor improves incorporated. We used an axisymmetric proto-
planetary disk characterized by a gaseous and a solid compo-
nent. The gaseous component is represented by a 1D grid for
the radial coordinate, while the solid component is represented
by a 2D grid, where one dimension is for the radial coordinate
and the other one is for the different planetesimal sizes. Some
quantities are only functions of the radial coordinate (R), such as
the gas surface density Σg(R), while some others are also func-
tions of the planetesimal sizes, such as the planetesimal surface
density Σp(R, rp).

2.1. Planetesimal size distribution

We changed the treatment of the planetesimal size distribution
from our previous work. We now considered that the differ-
ent radii are logarithmically equally spaced, so the j species is
given by

rpj =

(
rpN

rp1

) j−1
N−1

rp1 , j = 1, ...,N, (1)

where rpN and rp1 are the largest and smallest radii of the size
distribution, and N is the number of size bins considered. If mpj

is the mass between mpj−1/2 and mpj+1/2 , and adopting that the
planetesimal mass distribution is represented by a power law
(dn/dm ∝ m−αp ), mpj is given by

mpj =

∫ mp j+1/2

mp j−1/2

mn(m) dm

=
Cm2−α

p1

2 − α
[
Δ

3( j−1/2)(2−α)
N−1 − Δ 3( j−3/2)(2−α)

N−1

]
, (2)

where we use that mpj = Δ
3( j−1)/(N−1)mp1 with Δ = rpN /rp1 . In

the same way, the total mass is given by

mT =

∫ mpN+1/2

mp1−1/2

mn(m) dm,

=
Cm2−α

p1

2 − α
[
Δ

3(N−1/2)(2−α)
N−1 − Δ 3(2−α)

2(N−1)

]
. (3)

The amount of mass (with respect to the total mass) correspond-
ing to the j species is given by

p j =
mpj

mT
,

=

⎡⎢⎢⎢⎢⎢⎣Δ
3( j−1/2)(2−α)

N−1 − Δ 3( j−3/2)(2−α)
N−1

Δ
3(N−1/2)(2−α)

N−1 − Δ 3(2−α)
2(N−1)

⎤⎥⎥⎥⎥⎥⎦ · (4)

Finally, the planetesimal surface density corresponding to the
planetesimals of radius rpj is obtained by multiplying p j and
the total surface density of solids. Then, we treated each plan-
etesimal size independently. In this approach we can use only
one planetesimal size (for this case p = 1) or a discrete num-
ber (N) of bins to approximate the continuous planetesimal size
distribution.

2.2. Evolution of planetesimal eccentricities, inclinations,
and velocity migrations

As in our previous works, we considered that the evolution of the
eccentricities and inclinations of the planetesimals are governed
by two main processes: the embryo gravitational excitations and
the damping due to the gas drag.

The embryo stirring rates of the eccentricities and inclina-
tions are given by (Ohtsuki et al. 2002)

de2

dt

∣∣∣∣
stirr
=

(
MP

3bM�Porb

)
Pstirr, (5)

di2

dt

∣∣∣∣
stirr
=

(
MP

3bM�Porb

)
Qstirr, (6)

where MP is the mass of the planetary embryo, M� is the mass
of the central star, b is the full width of the feeding zone of the
planetary embryo in terms of its Hill radius, and Porb is the or-
bital period of the embryo. Finally, Pstirr and Qstirr are functions
of the planetesimal eccentricities and inclinations (for more de-
tails see Chambers 2006). However, this is a local approach. The
gravitational excitation decreases with increasing distance be-
tween the planetary embryo and the planetesimals. Hasegawa &
Nakasawa (1990) showed that when the distance from the plan-
etary embryo is larger than about four times its Hill radius, the
excitation over the planetesimals decays significantly. Therefore,
we need to restrict this effect to the neighborhood of the plane-
tary embryo. Using the EVORB code (Fernandez et al. 2002),
we fit a a modulation function to reproduce the excitation over
the quadratic mean value of the eccentricity of a planetesimal.
We found that this excitation is well reproduced by

f (Δ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1

1 +
∣∣∣∣ Δ
2.85RH

∣∣∣∣10

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (7)

where Δ = R − RP represents the distance from the planet (RP
is the planet radius orbit), RH is the planetary embryo Hill ra-
dius, and f (Δ) guarantees that the eccentricity and inclination
profiles of the planetesimals are smooth enough for a numerical
treatment and that the planetary excitation on planetesimals is
restricted to the embryo neighborhood.

On the other hand, the eccentricities and inclinations of the
planetesimals are damped by the gaseous component of the pro-
toplanetary disk. This damping depends on the planetesimal rel-
ative velocity with respect the gas, vp−g

rel , and on the ratio be-
tween planetesimal radius and the molecular mean free path, λ.
Adopting a gaseous disk mainly composed of molecular hydro-
gen (H2), the last is given by (Adachi 1976)

λH2 =
μH2√

2πρgdH2

, (8)

where μH2 and dH2 are the molecular weight and molecular di-
ameter of the molecular hydrogen, and ρg is the volumetric gas
density.
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As in the recent work of Fortier et al. (2013), we considered
three different regimes (Rafikov 2004; Chambers 2008)

– the Epstein regime: rp < λH2 ;
– the Stokes regime: rp > λH2 and Re < Retrans; and
– the quadratic regime: rp > λH2 and Re > Retrans;

where Re = vp−g
rel rp/ν is the Reynolds number and Retrans = 20 is

the transition between the Stokes and quadratic regimes (Rafikov
2004). The viscosity ν corresponds to the molecular viscosity,
given by

ν =
λH2 cs

3
, (9)

where cs is the local speed of sound.
Incorporating the different regimes is important because

smaller fragments (products of planetesimal fragmentation)
might be present in the Stokes or Epstein regimes. The three
drag regimes can be characterized in terms of the stopping time
given by (Chambers 2008)

tEps
stop =

ρprp

ρgcs
, (10)

tSto
stop =

2ρprp

3ρgcsλH2

, (11)

tQua
stop =

6ρprp

ρgv
p−g
rel

, (12)

where ρp is the planetesimal density. The relative velocity be-
tween planetesimals and the gas is given by

v
p−g
rel =

√
η2 +

5
8

e2 +
1
2

i2 vk, (13)

where vk is the Keplerian velocity and η = (vk−vg)/vk is the ratio
of the gas velocity to the Keplerian velocity.

The damping rates of the eccentricities and inclinations for
each regime are given by (Rafikov 2004; Chambers 2008)

de2

dt

∣∣∣∣Eps

gas
= − 2

tEps
stop

⎛⎜⎜⎜⎜⎜⎝ s2
Eps

1 + s2
Eps

⎞⎟⎟⎟⎟⎟⎠ e2, (14)

di2

dt

∣∣∣∣Eps

gas
= − 2

tEps
stop

⎛⎜⎜⎜⎜⎜⎝ s2
Eps

1 + s2
Eps

⎞⎟⎟⎟⎟⎟⎠ i2, (15)

where sEps = 2πtEps
stop/Porb,

de2

dt

∣∣∣∣Sto

gas
= − 2

tSto
stop

⎛⎜⎜⎜⎜⎝ s2
Sto

1 + s2
Sto

⎞⎟⎟⎟⎟⎠ e2, (16)

di2

dt

∣∣∣∣Sto

gas
= − 2

tSto
stop

⎛⎜⎜⎜⎜⎝ s2
Sto

1 + s2
Sto

⎞⎟⎟⎟⎟⎠ i2, (17)

with s2
Sto = 2πtSto

stop/Porb, and

de2

dt

∣∣∣∣Qua

gas
= − 2e2

tQua
stop

, (18)

di2

dt

∣∣∣∣Qua

gas
= − 2i2

tQua
stop

· (19)

Finally, the evolution of the eccentricities and inclinations are
given by solving the coupled equations by

de2

dt
= f (Δ)

de2

dt

∣∣∣∣
stirr
+

de2

dt

∣∣∣∣
gas
, (20)

di2

dt
= f (Δ)

di2

dt

∣∣∣∣
stirr
+

di2

dt

∣∣∣∣
gas
· (21)

The gas drag also causes an inward planetary orbit migration.
Then, the change rate of the major semi-axis is given by

da
dt
= vmig =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 2aη

tEps
stop

(
s2

Eps

1+s2
Eps

)
Epstein regime

− 2aη
tSto
stop

(
s2

Sto

1+s2
Sto

)
Stokes regime

− 2aη

tQua
stop

quadratic regime.

(22)

2.3. Oligarchic accretion regime

As in previous works, we considered that the embryos grow in
the oligarchic regime. Assuming the particle-in-a-box approxi-
mation, the planetesimal accretion rate of the j species is given
by (Inaba et al. 2001)

dM j
C

dt
=

2πΣp(RP, rpj )R
2
H

Porb
Pcoll

(
RC,RH, v

pj−P
rel

)
, (23)

where MC is the embryo core mass and Pcoll is the collision prob-
ability between the planetesimal j species and the embryo (see
Guilera et al. 2010, for the explicit expression of Pcoll). The colli-
sion probability is a function of the embryo core radius (RC), the
embryo Hill radius, and the relative velocity between the plan-
etesimal j species and the embryo, which is given by

v
pj−P
rel =

√
5
8

e2 +
1
2

i2 vk. (24)

When the embryo has a substantial envelope we have to incor-
porate the enhancement of capture cross-section of the embryo.
As in previous works, we used the prescription given by Inaba
& Ikoma (2003) to calculate the embryo enhanced radius R̃C,
where they proposed replace R̃C for RC in the expressions of the
collision probability.

The feeding zone of the embryo is often defined as the ring
around it where planetesimals can be accreted. We defined the
width of the feeding zone as about four times the embryo Hill
radius (at both sides of the embryo ). To do this, we integrate
Eq. (23) over the radial grid

dM j
C

dt
=

2πR2
HPcoll

Porb

∫
FZ

2πRψ(R,RP,RH)Σp(R, rpj ) dR, (25)

where ψ(R,RP,RH) is a normalization function that satisfies∫ ∞
−∞ 2πRψ(R,RP,RH) dR = 1. In contrast with our previous work,

we chose that

ψ =
3e
−
(

R−RP
4RH

)6

8πRHRPΓ(1/6)
, (26)

where Γ is the gamma function. With this new choice of ψ,∫ RP+4RH

RP−4RH
2πRψ(R,RP,RH) dR ∼ 0.96, so the tail of the function

has a negligible contribution in Eq. (25) and continues be smooth
for a numerical treatment. We employed a Simpson rule to inte-
grate Eq. (25) where at least ten radial bins between RP−4RH and
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RP+4RH are considered. Finally, the total planetesimal accretion
rate is given by

dMC

dt
=

∑
j

dM j
C

dt
· (27)

The rest of the model is the same as described in detail in Guilera
et al. (2010).

3. Planetesimal fragmentation

We incorporated a model of planetesimal fragmentation in our
model of giant planet formation that is based on the BOULDER
code (Morbidelli et al. 2009, and supplementary material). This
code models the accretion and fragmentation of a population
of planetesimals (because our model of giant planet formation
starts with an embryo already formed, sourrunded by a swarm of
planetesimals, i.e., in th oligarchic growth regime, we first took
into account only the corresponding fragmentation prescriptions,
see next sections).

According to this model, if Q∗D is the specific impact energy
per unit target mass (energy required to disperse 50% of the tar-
get mass) and Q is the collisional energy per unit target mass,
the collision between a target of mass MT and a projectile of
mass MP (with MP ≤ MT) gives a remnant of mass MR that is
given by

MR =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

[
− 1

2

(
Q

Q∗D
− 1

)
+ 1

2

]
(MT + MP), if Q < Q∗D,

[
−0.35

(
Q

Q∗D
− 1

)
+ 1

2

]
(MT + MP), if Q > Q∗D.

(28)

If MR > MT, the collision results in accretion. On the other hand,
if MR < 0, the target is fully pulverized and its mass is lost.
In general, Q∗D is function of the radius of the target. However,
because the model considers that the mass of the remnant is a
function of (MT + MP), for consistency, Q∗D must be calculated
using an effective radius which is given by

reff =

[
3(MT + MP)

4πρ

]1/3

, (29)

where ρ is the density of the planetesimals. The mass ejected
from the collision, defined as (MT+MP−MR), is distributed fol-
lowing a power-law mass distribution dn/dm ∝ m−p between the
minimum bin mass considered and the bin mass corresponding
to the larger fragment MF given by

MF = 8 × 10−3

[
Q

Q∗D
e−(Q/4Q∗D)2

]
(MT + MP). (30)

We found that for some hugely catastrophic collisions (when
MR 
 MT + MP) the mass of the larger fragment is greater
than the mass of the remnant. Therefore, we set MF = 0.5MR for
these collisions.

The exponent p of the mass distribution is given by

p =
1
3

(3 − q), (31)

where q is the exponent of the cumulative power-law distribu-
tion, and is given by

q = −10 + 7

(
Q

Q∗D

)0.4

e−(Q/7Q∗D). (32)

For the specific impact energy, we adopted the prescription given
by Benz & Asphaug (1999). We used the prescription for basalts
at impact velocities of 5 km s−1 given by

Q∗D = 3.5 × 107r−0.38
p + 0.3ρpr1.36

p , (33)

using a planetesimal density of ρp = 1.5 g cm−3. In this prescrip-
tion we used the effective radius (given by Eq. (29)) instead of
the planetesimal radius.

In our global model we consider the evolution by migration,
accretion and fragmentation of a population of planetesimals of
radii between 1 cm and rmax

p (a free parameter). However, in a
collisional regime the evolution of the population is ultimately
governed by the size distribution of the smallest objects. This
means that the truncation in rp = 1 cm can generate the ac-
cumulation of spurious mass in the smaller fragments. To avoid
this problem, we extrapolated the size distribution to a minimum
fragment size of rp = 0.01 cm, when we calculated the fragmen-
tation process. In this way, the mass ejected from the collision is
distributed between the mass bin corresponding to rp = 0.01 cm
and the bin mass corresponding to MF, as mentioned above. This
means that we are considering that the mass distributed below
the mass bin corresponding to rp = 1 cm is lost. Moreover, if
the mass bin corresponding to MR is below the mass bin cor-
responding to rp = 1 cm, we considered that the target is fully
pulverized.

The total number of collisions between targets j and pro-
jectiles i in a time Δt is given by (Morbidelli et al. 2009, and
supplementary material)

N j,i
C = P j,i

C npj npi F
j,i
g (rpj + rpi )

2Δt, (34)

where P j,i
C is the intrinsic collision probability, npj (rpj ) and

npi (rpi ) are the numbers (radii) of targets and projectiles, re-
spectively, and F j,i

g is the gravitational focusing factor. The time

step Δ t is limited by a physical condition. Using that N j
CTot

is the
total number of collisions of the targets j given by

N j
CTot
=

∑
i

N j,i
C = npj

∑
i

P j,i
C npi F

j,i
g (rpj + rpi )

2Δt, (35)

and defining τi as

τi =
∑

i

P j,i
C npi F

j,i
g (rpj + rpi )

2, (36)

we can write,

N j
CTot
= npjτiΔt. (37)

Then, N j
CTot

cannot be greater than npj , so for our model we
adopted that Δ t < 0.1/τi. This condition implies that for our
global model the time step cannot be greater than 10−4 Myr for
rmax

p = 10, 100 km, and 10−5 Myr for rmax
p = 0.1, 1 km.

3.1. Implementation of the fragmentation model

The evolution of the surface densities of planetesimals obeys a
continuity equation,

∂

∂t

[
Σp(R, rp)

]
− 1

R
∂

∂R

(
R

dR
dt
Σp(R, rp)

)
= F (R, rp), (38)

where R and rp reference radial and planetesimal size dependen-
cies, and F are the sink terms. In our previous works, we only
considered the planetesimal accretion by forming embryos as a
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Fig. 1. Schematic illustration of the fragmentation zone for an isolated
planet in the radial grid. IEFZ (OEFZ) represents the inner (outer) edge
of the fragmentation zone, while RP is the radial bin corresponding to
the planet. The fragmentation zone extends to eight Hill radii on either
side of the planet.

sink term. With the incorporation of the planetesimal fragmen-
tation, we introduce a new sink term in Eq. (38), which is solved
with a full implicit method in finite differences.

To incorporate the fragmentation process in the global
model, we defined a fragmentation zone for each embryo where
we calculated the collisional process (Fig. 1). This zone extends
to eight Hill radii on either side of the embryo (twice the feeding
zone)1. In this way we reduced the computational cost and safely
guaranteed that collisions that produce fragmentation (crateriza-
tion or catastrophic collisions) are within this zone, since they
do not extend far away from the feeding zone. In fact, the exci-
tations of the eccentricities and inclinations of the planetesimals
(and hence the relative velocities) abruptly decay far away from
the feeding zone (Eq. (21)).

In each radial bin of the fragmentation zone, the eccentric-
ities, inclinations, and surface densities for each planetesimal
size are defined. As we mentioned above, to calculate the evolu-
tion of the system mass, we considered a size distribution be-
tween 1 cm and a rmax

p , where initially the total mass of the
system is distributed in planetesimals of radii rmax

p . However, to
model the fragmentation we extrapolated the planetesimal sizes
(also the eccentricities, inclinations, and numbers of bodies) to
planetesimals of radius rp = 0.01 cm. In this way, we avoided
spurious mass accumulation in the smaller planetesimals of the
distribution.

The implementation methodology is as follows. The eccen-
tricities, inclinations, and surface densities are defined for each
size bin (between rp = 1 cm and rp = rmax

p ) and for each ra-
dial bin in the fragmentation zone. From the surface densities,
the number of bodies for each size bin and for each radial bin
are calculated. With these data, we extrapolate the inclinations,
eccentricities, and number of bodies for the corresponding size
bins between rp = 0.01 cm and rp = 1 cm. Then, we take a target
j belonging to the radial bin IEFZ (inner edge of the fragmenta-
tion zone, Fig. 1). We take a projectile i (with rpi ≤ rpj , i.e. from
rpi = 0.01 cm to rpi = rpj ) of the radial bin IEFZ, and calculate if
the orbits of the target and the projectile overlap (taking into ac-
count only the eccentricities of the target and projectile). If the
orbits overlap, the number of collisions between targets j and
projectiles i are calculated. With this information we can calcu-
late how much mass the projectiles i disperse from targets j and
how this mass (remnant plus fragments) is distributed in smaller
planetesimals than target j2. This is repeated for all projectiles

1 If the fragmentation zones of two embryo overlap, we only define
one fragmentation zone that contains both embryos.
2 Numerically, when a collision occurs, we consider that the target j
disappears from its corresponding radial bin aj, while the projectile i
disappears from its corresponding radial bin ai. On the other hand, the
remnant and the fragments are distributed in the radial bin aj corre-
sponding to the target.

belonging to the radial bin IEFZ. Then we move to the radial bin
IEFZ+1 and repeat the process for all the projectiles that corre-
spond to target j of the radial bin IEFZ. This process is repeated
until the radial bin OEFZ (outer edge of the fragmentation zone)
is achieved. This process is repeated for all targets j from radial
bin IEFZ, that is, from rpj = 1 cm to rpj = rmax

p . Then we move
to the radial bin IEFZ+1 and repeat the process for all the tar-
gets. The process is repeated until it reaches the radial bin OEFZ
for the targets.

When the process is completed, we have the change in mass
(loss and gain) for each planetesimal size and for each radial bin,
the product of the planetesimal fragmentation. With this we can
calculate the change in the surface densities for each planetesi-
mal size inside the fragmentation zone.

4. Results

The protoplanetary disk is defined between 0.4 au and 20 au, us-
ing 2500 radial bins logarithmically equally spaced. We applied
our model to study the role of planetesimal fragmentation on gi-
ant planet formation. We calculated the in situ formation of an
embryo located at 5 au for different values of the minimum mass
solar nebula (MMSN; Hayashi 1981), which is given by

Σp =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

7.1
( R
1 au

)−3/2

g cm−2 R < 2.7 au

30
( R
1 au

)−3/2

g cm−2 R > 2.7 au,

(39)

Σg = 1700
( R
1 au

)−3/2

g cm−2, (40)

T = 280
( R
1 au

)−1/2

K, (41)

ρg = 1.4 × 10−9
( R
1 au

)−11/4

g cm−3, (42)

where Σp and Σg represent the planetesimal and gaseous surface
densities, T is the temperature profile, and ρg is the volumetric
density of gas at the mid-plane of the disk. The discontinuity
at 2.7 au in the surface density of planetesimals is caused by
the condensation of volatiles, often called snow line. For numer-
ical reasons, and following Thommes et al. (2003), we spread
the snow line with a smooth function, so the surface density of
planetesimals is described by

Σp =

{
7.1 + (30 − 7.1)

[
1
2

tanh

(
R − 2.7

0.5

)
+

1
2

]}

×
( R
1 au

)−3/2

g cm−2. (43)

We carried out two different sets of simulations. In the first
one, we took into account that the planetesimal surface density
evolved only by accretion of planetesimals by the embryo and
for the orbital migration of planetesimals. In the other set of sim-
ulations the planetesimal surface density evolved by accretion,
orbital migration, and planetesimal fragmentation.

For the gaseous component of the disk, Alexander et al.
(2006) found that after a few Myr of viscous evolution the disk
could be completely dissipated by photo-evaporation in a time-
scale of 105 yr. For simplicity, we considered that the gaseous
component of the disk exponentially dissipated in 6 Myr, when
photo-evaporation acts and completely dissipates it. So, we ran
our models until the embryo achieved the critical mass (when the
mass of the envelope equals the mass of the core) or for 6 Myr.

A96, page 5 of 14

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201322061&pdf_id=1


A&A 565, A96 (2014)

Table 1. Results of the two sets of simulations, with and without planetesimal fragmentation (PF).

# rmax
p = 0.1 km rmax

p = 1 km rmax
p = 10 km rmax

p = 100 km

Without PF With PF Without PF With PF Without PF With PF Without PF With PF
MC t MC t MC t MC t MC t MC t MC t MC t

(M⊕) (Myr) (M⊕) (Myr) (M⊕) (Myr) (M⊕) (Myr) (M⊕) (Myr) (M⊕) (Myr) (M⊕) (Myr) (M⊕) (Myr)
2 23.10 4.41 0.04 6.00 5.84 6.00 0.04 6.00 0.35 6.00 0.06 6.00 0.11 6.00 0.11 6.00
4 32.23 0.39 0.09 6.00 21.37 2.99 0.08 6.00 9.17 6.00 0.18 6.00 0.56 6.00 0.52 6.00
6 35.25 0.17 0.20 6.00 27.55 0.92 0.12 6.00 21.55 3.27 0.39 6.00 2.13 6.00 1.34 6.00
8 (. . . ) (. . . ) 0.45 6.00 35.73 0.33 0.15 6.00 27.77 1.64 0.67 6.00 14.99 6.00 3.58 6.00

10 (. . . ) (. . . ) 0.77 6.00 45.78 0.15 0.18 6.00 32.64 0.99 1.00 6.00 25.06 4.07 7.13 6.00

Notes. The first column corresponds to the disk mass. A value of # means that we consider a disk # times more massive than the minimum mass
solar nebula (MMSN) of Hayashi (1981). MC represents the core mass when the planet achieves the critical mass and t represents the time at
which this occurs. Simulations stopped at t = 6 Myr, so that in this case MC represents the core mass at this time. For rmax

p = 0.1 km and for
disks 8 and 10 times more massive than the MMSN, planetesimal accretion rates become so high that models do not converge when planetesimal
fragmentation is not considered.

We started our simulations with an embryo of 0.005 M⊕,
which has an initial envelope of ∼10−13 M⊕, immersed in an ini-
tial homogeneous population of planetesimals of radius rmax

p (we
considered different values for rmax

p : 0.1, 1, 10, 100 km). It is im-
portant to remark that our initial conditions correspond to the
beginning of the oligarchic growth. Employing statistical sim-
ulations, Ormel et al. (2010) found that starting with an homo-
geneous population of planetesimals of radius r0, the transition
from the runaway growth to the oligarchic growth is character-
ized by a power-law mass distribution given by dn/dm ∝ m−p

(with p ∼ 2.5), between r0 and a transition radius rtrans for the
population of planetesimals, and isolated bodies (planetary em-
bryos). This implies that most of the solid mass lies in small
planetesimals. For simplicity, and considering the fact that most
of the mass lies in the smaller planetesimals of the popula-
tion, we used a single-size distribution instead of a planetesimal-
size distribution to represent the initial planetesimal population.
Consequently, our initial conditions are consistent with the oli-
garchic growth regime using rmax

p as r0.
In this work we aim to analyze how planetesimal fragmen-

tation impacts on the process of planetary formation. Accretion
collisions between planetesimals are important for studying the
transition from planetesimal runaway growth to the oligarchic
growth. In the oligarchic growth, embryos gravitationally dom-
inate the dynamical evolution of the surrounding planetesimals.
As embryos grow, they increase the planetesimal relative veloc-
ities and collisions between planetesimals result in fragmenta-
tion (erosive or disruptive collisions). For these reasons, we fo-
cused our analysis on fragmentation collisions. However, as we
show in next sections, for some special cases the total planetesi-
mal accretion rates are dominated by the accretion of very small
fragments (rp ∼ 1 m). For these small fragments, collisions be-
tween them (and obviously with smaller fragments) result in ac-
cretion. Therefore, we also calculated coagulation between plan-
etesimals for these special cases (see next sections for a detailed
discussion of this topic).

As we mentioned in the previous section, when planetesi-
mal fragmentation is considered (when it is not considered, we
used a single-size distribution to represent the planetesimal pop-
ulation) we used a discrete size grid between 1 cm and rmax

p
to represent the continuous planetesimal size distribution where
the fragments, products of planetesimal fragmentation, are dis-
tributed. The size step is given by Eq. (1). Because we used the
same size step independently of the value of rmax

p , this implies
that we used 21 size bins for rmax

p = 0.1 km, 26 size bins for
rmax

p = 1 km, 31 size bins for rmax
p = 10 km, and 36 size bins

for rmax
p = 100 km. In all cases, the initial total mass of solids

along the disk remains in the size bins corresponding to rmax
p .

The collisional evolution of planetesimals is the mechanism that
regulates the exchange of mass between the different size bins.

In previous works (Guilera et al. 2010, 2011) we showed
that the in situ simultaneous formation of solar system giant
planets occurred on a time-scale compatible with observed es-
timates only if most of the solid mass accreted by the planets re-
mains in small planetesimals (rp < 1 km). Recently, Fortier et al.
(2013) studied the role of planetesimal sizes in planetary pop-
ulation synthesis in detail. They found that including oligarchic
growth makes the formation of giant planets using big planetes-
imals (rp ∼ 100 km) unlikely, and only if most of the mass of
the system remains in small objects (rp ∼ 0.1 km) cores grow
enough to form giant planets. However, small planetesimals have
lower specific impact energies per unit target mass. This means
that small planetesimals suffer catastrophic collisions at lower
collisional energies.

The results of the two sets of simulations are summarized
in Table 1. For smaller planetesimals (rp = 0.1 km), the colli-
sional evolution completely inhibited planetary formation. When
planetesimal fragmentation was not taken into account, the em-
bryo was able to achieve the critical mass for 2−10 values of
the MMSN before the dissipation of the nebula3. Moreover,
for disks more massive than four times the MMSN the times
at which embryo achieves the critical mass are very short
(�0.5 Myr), while the critical masses are high (�30 M⊕). When
we included planetesimal fragmentation, the picture drastically
changed. For none of the analyzed cases the critical mass was
reached. Moreover, even for the case of the more massive disk
(10 MMSN), the planetary embryo was unable to achieve one
Earth mass. In Fig. 2, we show the total accretion rate of plan-
etesimals as a function of the core mass for rmax

p = 0.1 km. When
planetesimal fragmentation is incorporated, the total planetesi-
mal accretion rate is completely inhibited despite the low values
of the core masses. The small differences between the disks at
which the values of the core mass planetesimal fragmentation
start to decrease the accretion rates are caused by the amount of
gas of the different disks. The more massive the disk, the higher
the damping in the planetesimal eccentricities and inclinations,
hence the planetesimal relative velocities are lower for the same
value of the core mass.

These drops in the planetesimal accretion rates are due to a
drastic diminution in the mean value of the surface density of
planetesimals of radius 0.1 km in the feeding zone compared

3 For 8 and 10 values of the MMSN the planetesimal accretion rates
become so high that models do not converge.
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(Color version online.)

with the case without planetesimal fragmentation. In Fig. 3, we
plot the time evolution of the mean value of the surface den-
sity of planetesimals in the feeding zone for a disk six times
more massive than the MMSN. When we included planetesi-
mal fragmentation, the total planetesimal surface density signif-
icantly drops. It is important to remark that for the case with-
out planetesimal fragmentation, the total planetesimal surface
density corresponds to the surface density of planetesimals of
radius 0.1 km. This is not the case when we considered plan-
etesimal fragmentation. However, as we can see in Fig. 3, the
surface density of planetesimals of radius 0.1 km is almost the
total planetesimal surface density. This is because of two effects.
First, most of the mass distributed in the fragments, products of
the collisions, is lost below the size bin corresponding to 1 cm.
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D

Fig. 4. Exponent of the cumulative power-law distribution as a function
of Q/Q∗D given by the fragmentation model. The value q = −3 implies
that p = 2 (Eq. (31)). This means that the mass lost in a collision is
distributed homogeneously among the fragments.

As we mentioned above, we considered that the mass loss in
collisions is distributed following a power-law mass distribution
between fragments of rp = 0.01 cm and the largest fragment
of mass MF. Accordingly, if the exponent p of the mass dis-
tribution (dn/dm ∝ m−p) is higher than 2, most of the mass is
distributed in the smaller fragments, and if p < 2, most of the
mass is distributed in bigger fragments. When p > 2, most of
the mass is distributed in fragments smaller than 1 cm, so this
mass is lost in our model. In Fig. 4, we show the values of q, the
exponent of the cumulative power-law distribution (Eq. (32)), as
a function of Q/Q∗D. We can see that except for values between
2 � Q/Q∗D � 3.5, q is always lower than −3. This means that in
general q < −3, so p > 2 (see Eq. (31)) and most of the mass
distributed in fragments is lost. It is important to remark that for
these step distributions, the integration over the mass, between
m = 0 and m = MF, diverges. In the Boulder code, this problem
is solved by using that these mass distributions are valid between
m = mt (mt represents a transition mass) and m = MF and using
an ad hoc mass distribution with an exponent p = 11/6 between
m = 0 and m = mt. In this approach, most of the mass loss in col-
lisions is distributed in the radial bin correspondig to rt (the tran-
sition radius corresponding to mt). However, we did not follow
this approach. We truncated the mass distribution in a minimum
mass, the one corresponding to rp = 0.01 cm (we tested lower
values than rp = 0.01 cm and found analogous results). This is
an alternative approach, adopting a fixed value of rt = 0.01 cm
and calculating the exponent p, such that the integration over
the mass between m = 0 and m = MF, converges4. In this way,
we always guarantee for each collision that the mass distributed
between rp = 0.01 cm and the radial bin corresponding to plan-
etesimals of mass MF does not exceed the mass ejected from the
collision (MT + MP − MR).

The second effect is that the remnants, products of the col-
lisions between planetesimals of radius 0.1 km, are quickly
pulverized. Because these planetesimals initially contain all the
mass of the system, the pulverization of the remnants implies a
high loss of mass. For example, in Fig. 5 we can see the radial

4 For some simulations, we tested the approach given by the Boulder
code and found that rt is always smaller than 1 cm. However, we had
to adopt the assumption that there is only one body of mass MF to be
able to calculate all the free parameters in the resulting integral mass
equation.
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itational excitation increases the eccentricities and inclinations of the
planetesimals. It is also clear that planetesimals do not reach equilib-
rium values (β = i/e � 0.5). (Color version online.)

profiles of the eccentricities and inclinations at different times
at the embryo’s neighborhood. The gravitational perturbations
of the planet increase the eccentricities and inclinations of the
planetesimals near the planet’s location. From this profile we can
analyze the relative velocities, and the ratio Q/Q∗D, when targets
and projectiles belong to the same radial bin. Figure 6 shows
the time evolution of the radial profiles for the relative velocities
(top panel) and for the ratio Q/Q∗D (bottom panel) when targets
and projectiles belong to the same radial bin. It follows from
Eq. (28) that if the ratio Q/Q∗D corresponding to a collision is
higher than ∼2.5, the remnant of such a collision is pulverized.
As we can see from Fig. 6, the collisions between planetesimals
with radius of 0.1 km quickly become supercatastrophic and the
mass of the remnants, their products, is lost.

Finally, in Fig. 7 we show the time evolution of the num-
ber of planetesimals and the planetesimal surface densities at
the embryo’s radial bin. The number of planetesimals with a ra-
dius of 0.1 km is quickly reduced by the collisional evolution.
Moreover, the generation of fragments does not compensate the
loss of planetesimals with a radius of 0.1 km. In fact, the values
of the planetesimal surface densities for planetesimals smaller
than 0.1 km are always
1 gr cm−2.

We found similar results for the others values of rmax
p .

Collisions between planetesimals of radius rmax
p become super-

catastrophic and significantly reduce the total planetesimal ac-
cretion rates. This effect, combined with the fact that most of
fragment mass is deposited in size bins smaller than the one cor-
responding to rp = 1 cm, prevented the formation of a core from
reaching the critical mass.

Only for rmax
p = 100 km and massive disks, we were able

to form cores with masses greater than one Earth mass. This
is because despite of higher relative velocities for bigger plan-
etesimals, the ratio Q/Q∗D is lower compared to small planetesi-
mals (Fig. 8). In Fig. 9, we plot the planetesimal accretion rates
for rmax

p = 100 km and a disk ten times more massive than
the MMSN. With the red solid line, we plot the total planetesi-
mal accretion rate. This accretion rate abruptly drops compared
with the case without planetesimal fragmentation because of the
lower accretion of planetesimals with a radius of 100 km. The
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accretion of fragments also does not compensate for the lower
accretion of planetesimals with a radius of 100 km.

Finally, in Fig. 10 we show the time evolution of the radial
surface density profiles of planetesimals with a radius of 100 km,
for the case with and without planetesimal fragmentation. The
profiles are the same at 0.5 Myr. At 1 Myr the planetesimal sur-
face density around the planet’s location (5 au) is clearly lower
for the case with planetesimal fragmentation. This is caused by
planetesimal fragmentation, but not by planetesimal accretion by
the embryo. We can see from Fig. 9 that at this time the accre-
tion rate of planetesimals with a radius of 100 km is practically
the same as that without planetesimal fragmentation. Eventually,
the lower planetesimal surface density around the planet’s loca-
tion increases even more, for the case with planetesimal frag-
mentation. Finally, at 4 Myr, the planetesimal surface density is
almost zero around the planet’s location. We also can see that the
mass-loss through planetesimal fragmentation is higher near the
planet’s location and lower far away from the planet.

We found that our results are insensitive to the numbers of
radial and size bins. We tested our results with twice radial and
size bins and obtained analogous results.
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4.1. Fragment distribution

As we mentioned in previous sections, most of the fragment
mass produced by the collisions between planetesimals is de-
posited in size bins smaller than 1 cm, because the exponent p
of the power-law of the fragment mass distribution is generally
larger than 2. However, other works suggested that the expo-
nent p should be in a range between 1 and 2. This implies that
most of the fragment mass is deposited in larger fragments and
the mass loss is much smaller than in our model. Kobayashi &
Tanaka (2010) developed a similar fragmentation model (in a
qualitative way about the outcome of a collision) where the frag-
ment mass is also distributed following a power-law distribution
(dn/dm ∝ m−p). In Kobayashi et al. (2010, 2011) and Ormel
& Kobayashi (2012), this model was applied to study planetary
formation adopting a value of p = 5/3. These authors found that
in general planetesimal fragmentation inhibits the formation of
massive cores. The formation of cores with masses greater than
10 M⊕ is only possible for massive disks, and only if large plan-
etesimals are considered (rp ≥ 100 km).

We applied our model using a fixed exponent p = 5/3 for the
power-law mass distribution of the fragments. We again ran the
simulation for a disk ten times more massive than the MMSN
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p = 100 km and a disk six times
more massive than the MMSN. Despite the higher values of the rela-
tive velocities of planetesimals with rp = 100 km, the ratio Q/Q∗D is
lower compared with the case for small planetesimals. This is because
the specific impact energy (Q∗D) for planetesimals of rp = 100 km is
approximately three orders of magnitude higher than that for planetesi-
mals of rp = 0.1 km. (Color version online.)

using an initial population of planetesimals with a radius of
100 km (our best case). Using a fixed exponent p = 5/3, we
found that planetesimal fragmentation favors the formation of
a massive core. For this simulation, we found that the embryo
achieved the critical mass at 3.61 Myr (∼0.5 Myr early than
without planetesimal fragmentation) with a core of 18.58 M⊕
(∼6.5 M⊕ smaller than without planetesimal fragmentation).

In Fig. 11 we plot the time evolution of the total planetesimal
accretion rates for the case without planetesimal fragmentation
and p = 5/3, and the planetesimal accretion rates for different
planetesimal sizes for p = 5/3. Without planetesimal fragmen-
tation, the planetesimal accretion rate of planetesimals with a
radius of 100 km corresponds to the total planetesimal accretion
rate. However, this is not the case when planetesimal fragmen-
tation is considered. Between ∼0.5 Myr and ∼1 Myr the accre-
tion rate of planetesimals with rp = 100 km is slightly lower
than that without fragmentation. However, the total planetesi-
mal accretion rate is higher. This is because of the accretion
of fragments, especially for the accretion of fragments between
∼0.1 km and ∼25 km. Then, the accretion rate of planetesimals
of rp = 100 km increases at ∼1 Myr. This is because at this time
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Fig. 9. Planetesimal accretion rates as a function of time for an embryo
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the ratio R̃C/RC becomes higher than unity, so the enhanced in
the capture-cross section due to the embryo’s envelope for plan-
etesimals with a radius of 100 km make the accretion of such
planetesimals more efficient. The total planetesimal accretion
rate remains higher than without fragmentation until ∼2.5 Myr.
This excess in the total planetesimal accretion rate is the reason
that at ∼2.5 Myr the planet has a core of ∼12.5 M⊕ (Fig. 13 top).
At the same time, the planet without planetesimal fragmenta-
tion has a core of ∼4.5 M⊕. After 2.5 Myr, the total planetesimal
accretion rate decreases because of planetesimal fragmentation
until the planet reaches the gaseous runaway phase.

In Fig. 12, we compare the time evolution of the number of
planetesimals at the planet’s radial bin for the cases where the
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accretion rate for the case without planetesimal fragmentation. The red
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exponent of the power-law that represents the planetesimal mass
distribution has a constant value of 5/3 and where this expo-
nent is calculated via Eq. (31). There are many more fragments
between ∼0.1 km and ∼25 km in the first case for 0.75 Myr,
1 Myr, and 2 Myr. This is because for this case, the mass loss
in collisions is distributed in larger fragments. The accretion of
these fragments favors the formation of a massive core. Then, for
3 Myr, there are fewer fragments between ∼0.1 km and ∼25 km
than when the mass loss in collisions is distributed in smaller
fragments. But this is because of the accretion of such fragments.
Finally, for the first case the formation of the core occurs at
∼3.61 Myr.

A similar behavior occurs for less massive disks. However,
for a disk eight times more massive than the MMSN the planet
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did not reach the critical mass. After 6 Myr of evolution, the
planet achieved a total mass of ∼20 M⊕ (∼14 M⊕ for the core
and ∼6 M⊕ for the envelope, Fig. 13 bottom). Although this fi-
nal core is smaller than the case without planetesimal fragmen-
tation (Table 1), at 4 Myr the planet has a core slightly larger
than 10 M⊕ (in the case without planetesimal fragmentation the
planet has a core of ∼4 M⊕ at the same time).

We also found that for small planetesimals, if most of the
fragment mass is deposited in larger fragments the total plan-
etesimal accretion rate becomes higher than in the case in
which most of the fragment mass is deposited in smaller frag-
ments. However, for these cases the total planetesimal accre-
tion is always lower than for the case in without planetesi-
mal fragmentation. We calculated again the simulations for a
disk ten times more massive than the MMSN. However, for
rmax

p = 0.1, 1, 10 km, the situation is different. For these cases,
the accretion rate corresponding to rmax

p quickly drops and the
total accretion rate is dominated by fragments of ∼rp = 1 m.
However, collisions between these small fragments (and ob-
viously with smaller fragments) are not disruptives but rather
the outcome of a collision that results in an effective accre-
tion. This means that in this scenario planetesimal coagulation
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Fig. 14. Top: planetesimal accretion rates for different planetesimal
sizes, for a disk ten times more massive then the MMSN, in which
p = 5/3 and rmax

p = 0.1 km, as a function of time. The dashed black
line represents the total planetesimal accretion rate for the case without
planetesimal fragmentation (WF). The dashed red line represents the to-
tal planetesimal accretion rate for the case with planetesimal fragmen-
tation in which p is calculated with Eq. (31), our basis model (BM).
The solid red line represents the total planetesimal accretion rate for
the case with planetesimal fragmentation with p = 5/3. Bottom: time
evolution of the total planetesimal accretion rates (solid lines) and the
accretion rates of fragments of 1 m (dashed lines) for the case where
only planetesimal fragmentation is considered (red lines) and for the
case in which planetesimal coagulation and fragmentation are consid-
ered (black lines). The plot corresponds to a disk ten times more mas-
sive then the MMSN and for the case of rmax

p = 0.1 km. (Color version
online.)

is necessary. As an example, in Fig. 14 (top) we plot the plan-
etesimal accretion rates for rmax

p = 0.1 km. The accretion rate
of planetesimals with a radius of radius 0.1 km drops signifi-
cantly (green curve), and the total accretion rate is ultimately
dominated by small planetesimals (rp ∼ 1 m, violet curve). The
planetesimal accretion rates of fragments with ∼rp = 1 m be-
come significant high values of the total planetesimal accretion
rates, but this effect is fictitious because small planetesimals co-
agulate and form larger bodies. For this case, we stopped the
simulation at 0.75 Myr because at this time the core had reached
a mass of ∼12 M⊕. But again, these results might be fictitious. A
planetesimal coagulation model is necessary in these cases.

This effect does not occur for large planetesimals, where the
accretion of such small fragments does not significantly con-
tribute to the total accretion rate. In fact, for large planetesimals,
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the total accretion rate is always dominated by the accretion of
planetesimals of radius rmax

p and the fragments that significantly
contribute to the total accretion rate have radii larger than 0.1 km
(collisions are disruptives for such fragments).

However, to be more rigorous with these intuitive analyse,
we recalculated the simulations for rmax

p = 100 km and rmax
p =

0.1 km, but also incorporating coagulation between planetesi-
mals in the model. Following the Boulder code, we considered
that the outcome of a collision results in accretion if the mass of
the remnant is larger than the mass of the target. We considered
that when a coagulation between planetesimals occurs, the tar-
get and projectile are removed from their corresponding radial
bins, and a new object of mass MT + MP is put in the radial bin
corresponding to the target, that is, we considered perfect accre-
tion. We pursued a very simple intention with this: we wish to
analyze whether the coagulation between planetesimals modifies
(or not) the results found in this section. Therefore, we consid-
ered for simplicity the size grid that represents the continuous
planetesimal size distribution to be fixed. It is important to note
that the computational costs are much higher.

For rmax
p = 100 km, we found identical results for both

cases, considering only planetesimal fragmentation or consider-
ing planetesimal coagulation and fragmentation. As we argued
before, this is because small fragments contribute negligibly to
the total planetesimal accretion rate (Fig. 11).

However, for rmax
P = 0.1 km, we found that the incorpora-

tion of planetesimal coagulation significantly modified the re-
sults. In Fig. 14 (bottom), we plot the time evolution of the total
planetesimal accretion rate and the accretion rate of fragments
of 1 m for the case with only planetesimal fragmentation and
for the case with planetesimal coagulation and fragmentation.
For this last case, after 6 Myr of evolution the core achieved a
mass of only ∼3 M⊕. In both cases, the accretion of fragments
of ∼1 m governed the total accretion rates, but the incorporation
of planetesimal coagulation drastically lowers the accretion of
such fragments. It is clear that when the accretion of very small
fragments becomes important in the total planetesimal accretion
rate, a full planetesimal collisional model (which includes coag-
ulation and fragmentation) is needed. We will study this topic
in detail by developing a full planetesimal collisional model in
a future work, incorporating an adaptative size grid to study in
more detail the collisional evolution of the planetesimal popula-
tion and starting from the planetesimal runaway growth.

Finally, planetesimal coagulation did not quantitatively mod-
ify the results shown in Table 1 for low values of rmax

p . For these
cases, all the accretion rates for the different planetesimal sizes
significantly decrease with time because the fact that most of the
mass loss in collisions is distributed below the size bin corre-
sponding to rp = 1 cm.

4.2. Accretion of small fragments

We briefly discuss the accretion of small fragments (pebbles).
Lambrechts & Johansen (2012) found that pebbles are accreted
extremely efficiently by embryos. Pebbles with the appropri-
ate Stoke number have a capture cross-section as large as the
Hill radius of the embryo, even if the embryo does not have a
gaseous envelope. When they pass within the Hill radius, they
spiral down to the embryo’s physical radius because of gas drag.
Lambrechts & Johansen (2012) found that the pebble accretion
rates (in the Hill accretion regime) is given by

ṀH = 2RHΣpvH, (44)
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R̃C/RH as a function of the core mass for different
planetesimal sizes. The plot corresponds to the case of a disk ten times
more masive than the MMSN and rmax

p = 100 km when planetesimal
coagulation and fragmentation are considered. The black dashed line
corresponds to the evolution of the term (RP/RH)1/2, where RP is the
radius of the planet. (Color version online.)

where vH = ΩkRH, andΩk is the Keplerian frecuency. As the au-
thors note, in the classical scenario of planetesimal accretion,
planets do not accrete planetesimals from the Hill radius.
Instead, planets accrete planetesimals from a fraction α1/2 of the
Hill radius, with α = RC/RH.

We used the planetesimal accretion rates of Inaba et al.
(2001) given by

Ṁ = 2πΣpR2
HPcoll/Porb. (45)

In the low velocity regime, the probability collision or small
planetesimals is given by

Pcoll = 11.3
√

RC/RH, (46)

because we also considered the enhanced radius due to the
planet’s gaseous envelope Pcoll = 11.3

√
R̃C/RH. In terms of the

pebble accretion rate, our planetesimal accretion rate (for small
fragments) is given by

Ṁ = 5.65
√

R̃C/RH ṀH. (47)

In Fig. 15 we plot the evolution of the term
√

R̃C/RH as a
function of the core mass for different planetesimal sizes for
the case of a disk ten times more masive than the MMSN and
rmax

p = 100 km when planetesimal coagulation and fragmenta-
tion are considered. For small fragments (rp ≤ 1 m) the evolution
is almost the same. This is because for these small fragments the
enhanced capture radius becomes the planet’s radius5 for low
values of the core mass. Due to the factor 5.65 in Eq. (47), our
planetesimal accretion rates for rp � 1 m are higher than the
pebble accretion rates of Lambrechts & Johansen (2012) when
the planet’s core mass becomes larger than ∼0.2 M⊕. Despite
these high accretion rates, these small fragments have a neglegi-
ble contribution in our models because of the low values for the
corresponding surface densities (see for example Fig. 7). It is
important to note that the probability collision for smaller frag-
ments (rp � 1 m) always corresponds to the low-velocity regime.

5 In our models the planet’s radius is the radius of the envelope, which
is the minimum between the accretion radius and the Hill radius, see
Guilera et al. (2010).
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Fig. 16. Top: time evolution of the radial profiles of the surface density
of planetesimals of rp = 100 km when planetesimal fragmentation is
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the MMSN. Black dashed lines correspond to the isolated formation
of a planet located at 5 au. Red solid lines correspond to the simulta-
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ent lines correspond to different times: 0, 0.5, 1, 1.5, 2, and ∼2.5 Myr.
Eventually, the planetesimal surface density decreases in the neighbor-
hood of both embryos. Bottom: same as top panel, but for fragments that
most contribute into the total accretion rate, rp ∼ 25 km. In this case,
the profiles increase around 5 au for t = 0.5, 1, 1.5 Myr, but for t = 2,
∼2.5 Myr profiles decrease because of accretion. The increments in the
surface density around 6 au correspond to the profiles at times 1.5, 2,
and ∼2.5 Myr. (Color version online.)

4.3. Simultaneous formation of two embryos

Finally, we analyzed the in situ simultaneous formation of two
embryos. We aimed to study if the fragments generated by an
outer embryo (which have an inward migration) favor the for-
mation of an inner embryo. We only analyzed the case of a
disk ten times more massive than the MMSN, where initially
all the solid mass of the system is deposited in planetesimals of
rp = 100 km and for the case p = 5/3. We located the em-
bryos at 5 au and 6 au. Both embryos initially have cores of
0.005 M⊕ and envelopes of ∼10−13 M⊕. The simulation stopped
at ∼2.5 Myr. At this time, the embryo located at 5 au achieved
a total mass of 13.20 M⊕ (12.10 M⊕ for the core and 1.10 M⊕
for the envelope), while the embryo located at 6 au achieved a
total mass of 2.61 M⊕ (2.60 M⊕ for the core and 0.01 M⊕ for the
envelope). The simulation stopped because the distance between
the embryos became smaller than 3.5 mutual Hill radii. When
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Fig. 17. Core masses as a function of time for the isolated formation of
a planet located at 5 au (black dashed line) and for the simultaneous
formation of two planets located at 5 au (red solid line) and 6 au (blue
solid line). Models correspond to rmax

p = 100 km for a disk ten times
more massive than the MMSN, and planetesimal fragmentation is con-
sidered with p = 5/3. The simultaneous formation stopped at ∼2.5 Myr
because the distance between planets became smaller than 3.5 mutual
Hill radii. (Color version online.)

two embryos are too close, their mutual gravitational perturba-
tion may lead to encounters or collisions between them.

The time evolution of the radial profiles for the surface den-
sity of planetesimals of rp = 100 km and rp ∼ 25 km (which
are the two sizes that most contribute to the total planetesimal
accretion rate, see Fig. 11, where the 25 km is the size of the
fragments that contribute most) for the embryo located at 5 au
are very similar (Fig. 16). Therefore, we do not expect a signif-
icant difference in the formation of this embryo. In Fig. 17 we
plot the time evolution of the core mass for both embryos com-
pared with the isolated embryo located at 5 au. We do not find a
difference in the formation of the embryo located at 5 au between
isolated and the simultaneous formation with an outer embryo,
at least for the profile of the disk we analyzed here.

5. Conclusions

Employing the Boulder code, Morbidelli et al. (2009) found that
the present size frequency distribution of bodies in the asteroid
belt can be reproduced starting with an initial population of large
planetesimals with sizes of between 100−1000 km. An initial
population of large planetesimals is suggested by the works of
Johansen et al. (2007), Cuzzi et al. (2008, 2010), and Youdin
(2011). However, Fortier et al. (2009) demonstrated that the for-
mation of massive cores able to achieve the critical mass to start
the gaseous runaway phase, starting from large planetesimals,
requires several million years, even for massive disks.

We studied the role of planetesimal fragmentation on giant
planet formation. We developed a model for planetesimal frag-
mentation based on the Boulder code and incorporated it in our
model of giant planet formation (Guilera et al. 2010, 2011),
so that the planetesimal population evolved by planet accre-
tion, migration, and fragmentation. We numerically studied how
planetesimal fragmentation modified the formation of an embryo
located at 5 au for a wide range of disk masses and planetesimal
sizes.

We considered that initially all the solid mass of the system
is deposited in planetesimals of radius rmax

p , and that the mass
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loss in collisions is distributed by a power-law mass distribution
between the largest fragment and the smallest size bin. The ex-
ponent of this power-law mass distribution was calculated by the
model. We found that this exponent is generally larger than 2, so
most of the mass is distributed in fragments smaller than 1 cm,
which is the smallest size we considered for accretion. For this
reason, most of the mass produced by the collisions was lost and
fragments did not significantly contribute to the embryo growth.

We found that planetesimal fragmentation inhibits planet for-
mation. Only for large planetesimals (rmax

p = 100 km), the mass
of the embryo was larger than 1 M⊕ for high-mass disks, but for
all cases the core did not achieve the critical mass. However, if
most of the mass loss in collisions was distributed in larger frag-
ments, that is, when the exponent of the power-law mass distri-
bution was lower than 2, we found that planetesimal fragmen-
tation favored the relatively rapid formation of a massive core
(larger than 10 M⊕), as previously reported (Kobayashi et al.
2011; Ormel & Kobayashi 2012). The accretion of fragments
between ∼100 m and ∼25 km increments the total planetesimal
accretion rate, but this total accretion rate is always governed by
the accretion of planetesimals of rp = 100 km. For this case, we
also analyzed whether the presence of an outer embryo modi-
fied the formation of an inner one. For this, we calculated the
in situ simultaneous formation of two embryos located at 5 au
and 6 au. In particular, we analyzed whether the fragment mi-
gration produced by the outer embryo affected the formation of
the inner one. We did not find a difference between isolated and
simultaneous formation for the embryo located at 5 au. But in
this case, at ∼2.5 Myr, the separation between the embryos be-
came smaller than 3.5 mutual Hill radii, therefore the simulation
was stopped. Possible mergers between massive embryos may
lead to a rapid formation of massive cores.

On the other hand, Weidenschilling (2011) showed that the
present size distribution observed in the asteroid belt can be
also reproduced starting from planetesimals with a radius of
∼0.1 km. Kenyon & Bromley (2012) concluded that the size
distribution of the transneptunian objects can be reproduced
starting from a massive disk composed of relative small plan-
etesimals (rp � 10 km). However, for such small planetesimals,
collisions quickly become highly catastrophic because of the
low values for the specific impact energy. This means that targets
are quickly pulverized and the total surface density of solids
drops drastically. When the mass loss in collisions is distributed
in smaller fragments, as the Boulder code predicts, planet for-
mation is completely inhibited. When the mass loss in collisions
is distributed in larger fragments, fragments of ∼1 m ultimately
govern the total planetesimal accretion rate. However, for
these small fragments collisions result in accretion. Therefore,
we repeated the simulations (for rmax

p = 0.1, 100 km) for the case

where the mass loss in collisions is deposited in larger frag-
ments, but incorporated planetesimal coagulation. As we ex-
pected, planetesimal coagulation did not modify the process of
planetary formation for rmax

p = 100 km, because small frag-
ments contribute only negligibly to the total planetesimal ac-
cretion rate. On the other hand, planetesimal coagulation sig-
nificantly modified the results for rmax

p = 0.1 km, inhibiting the
formation of a massive core. We will analyze this case in de-
tail, developing a full planetesimal collisional model in a future
work.
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